
Organization of the Code

There are several packages associated with the RCP system. The RCP/CORBA client implementation
all resides in one package, rcp. The interface for the server, used by the client, is defined in
rcp_db_server_idl. The remainder of this document discusses only those parts of the rcp package most
relevant to the RCP/CORBA client implementation.

Database classes

The class RCPDatabaseServices represents a single logical RCP database; this is the only part of the
RCP database subsystem seen by the remainder of the RCP system.

The class AbsRCPDatabase is abstract; it defines the interface, used by RCPDatabaseServices, which
must be implemented by any concrete database class.

The classes FileSystemDB and RCPDatabaseInMemory are two examples of concrete database classes;
each implements the AbsRCPDatabase interface. FileSystemDB is the class that has been used for the
past two years by DØ. It manipulates a simple database which is implemented purely in C++, with the
persistent data being in the form of a set of human-readable (but not human-modifiable) files.
RCPDatabaseInMemory exists primarily for testing purposes, but it is sometimes useful for users with
special circumstances. It implements a database which has no persistence past the end of the program in
which it is used.

The class CORBA_RCPDatabase implements the AbsRCPDatabase interface through use of the
functions declared by the rcp_db_server_idl package. This class, and the classes and functions used to
implement it, are the central topic for this review. As far as the RCP system (and clients thereof) are
concerned, CORBA_RCPDatabase is part of a database server. As far as the rcp_db_server_idl interface
is concerned, however, CORBA_RCPDatabase is the client of the CORBA server interface.

Translation Code

The RCP system normally works with a series of C++ classes: RCPValue, RCPName, RCPID, etc. The
CORBA interface does not know about these classes. Because the client code may not run an ORB, the
interface does not allow passing of any of these objects through the interface, to be used by the server.

Instead, the client code translates between the various C++ classes and the C++ representation of the
CORBA IDL data structures which are passed through the IDL interface. Much of the bulk of the client
code consists of this translation code.

RCP/CORBA Database Inter face Review

Code Overview

Page 1 of 3RCP/CORBA Client Code Overview

11/4/2001file://Q:\rcp_corba_review\code_overview.htm

More than one design tr ied

The translation code shows two different styles; this is a reflection of the author's learning process while
writing the code.

My first attempt at producing the translation code was to write a few templates which would be able to
handle most of the translation process, with only a few specialized functions. In the end, this did not
work well, and the later code is less templated. The resulting mixture is a messy combination of a few
templates and many template specializations.

There are several reasons why my templating experiment failed:

1. The CORBA C++ binding was not designed with support of generic programming in mind. For
example, the CORBA C++ binding for sequence does not provide the sort of typedefs needed for
reasonable generic programming. In consultation from Jim and Walter, we were able to come up
with work-arounds for some of the problems, but the results are still ugly -- and thus not very
maintainable. The CORBA string class is also not suitable for generic programming; it requires
too many special memory handling procedures, making it more difficult to write generic code that
deals with a CORBA string as easily as a built-in type.

2. The exception model implemented by Orbacus is not convenient for automatic handling. Ideally, a
standardized library should exist to handle routine chores such as catching and handling
exceptions thrown by the CORBA infrastructure (such as catching exceptions due to
disconnection, and attempting reconnection, with user-configurable timeouts). Orbacus does not
provide such a library.

3. The early definitions of some of the data structures in the rcp_db_server_idl package were not
suitable for use in generic programming. This is now largely cured, but I have not tried to rework
the code to produce a cleaner implementation.

As a much more minor note, some quirks in the template instantiation mechanism of KAI C++ v 4.0
(earlier versions did not manifest this problem) required explicit instantiation of a class template in
specific source modules. As the code developed, and different functions were added to different source
modules, the place where the explicit instantiation was required would change. Because this place had to
be discovered by experiment -- a full clean and rebuild of the library and all test programs -- the process
was quite time-consuming. This helped dissuade me from more extensive use of templates in this code.

Exception handling

Another way in which the code reflects my learning process is the style of error handling. In the earlier
code, I was trying to make sure that neither ORB-generated exceptions nor Python-generated exceptions
thrown across the CORBA connection could propagate to the user (of the RCP system). I still think this
is the appropriate goal.

Since Orbacus does not provide a library to wrap calls to CORBA interface objects (in order to provide
automatic handling of the ORB-related exceptions), and since there was none in existence at DØ, I spent
some time trying to design such a library. However, there was no other interest in having such a library,
and I was encouraged not to spend time producing such a library.

Page 2 of 3RCP/CORBA Client Code Overview

11/4/2001file://Q:\rcp_corba_review\code_overview.htm

In the next generation of code I tried to be very careful with nested try and catch blocks, attempting to
make sure no inappropriate exception propagated to the user. The resulting code is quite messy. In the
final generation of code, I have almost entirely abandoned the laundering of exceptions, in the spirit of
getting to a working product in less time.

Testing

The tests for the RCP system are fairly extensive; there are about 45 test programs in the rcp package.
The most comprehensive part of the tests is run by a Perl script that manipulates the environment,
making and deleting logical databases in a configuration necessary to tests all (I think) of the use cases
of the RCP system. This is the suit of tests that is used to very that the FileSystemDB class is performing
the correct tasks.

The tests for CORBA_RCPDatabase and the rcp_db_server_idl interface consist of a few tests to very
the CORBA connectivity, a few tests to very the functioning of the CORBA utility functions used to
support CORBA_RCPDatabase, and a test suite for CORBA_RCPDatabase itself that is nearly identical
to that used for FileSystemDB. The last 1-2 months of development of RCP have mostly consisted of
working through this suite of tests, and discovering and fixing the parts of the client or server or Oracle
schema that failed to satisfy the tests.

Page 3 of 3RCP/CORBA Client Code Overview

11/4/2001file://Q:\rcp_corba_review\code_overview.htm

